Functional principal components analysis via penalized rank one approximation
نویسندگان
چکیده
Abstract: Two existing approaches to functional principal components analysis (FPCA) are due to Rice and Silverman (1991) and Silverman (1996), both based on maximizing variance but introducing penalization in different ways. In this article we propose an alternative approach to FPCA using penalized rank one approximation to the data matrix. Our contributions are four-fold: (1) by considering invariance under scale transformation of the measurements, the new formulation sheds light on how regularization should be performed for FPCA and suggests an efficient power algorithm for computation; (2) it naturally incorporates spline smoothing of discretized functional data; (3) the connection with smoothing splines also facilitates construction of cross-validation or generalized cross-validation criteria for smoothing parameter selection that allows efficient computation; (4) different smoothing parameters are permitted for different FPCs. The methodology is illustrated with a real data example and a simulation.
منابع مشابه
Data Distillery: Effective Dimension Estimation via Penalized Probabilistic PCA
The paper tackles the unsupervised estimation of the effective dimension of a sample of dependent random vectors. The proposed method uses the principal components (PC) decomposition of sample covariance to establish a low-rank approximation that helps uncover the hidden structure. The number of PCs to be included in the decomposition is determined via a Probabilistic Principal Components Analy...
متن کاملA penalized matrix decomposition, with applications to sparse principal components and canonical correlation analysis.
We present a penalized matrix decomposition (PMD), a new framework for computing a rank-K approximation for a matrix. We approximate the matrix X as circumflexX = sigma(k=1)(K) d(k)u(k)v(k)(T), where d(k), u(k), and v(k) minimize the squared Frobenius norm of X - circumflexX, subject to penalties on u(k) and v(k). This results in a regularized version of the singular value decomposition. Of par...
متن کاملValue function approximation via low-rank models
We propose a novel value function approximation technique for Markov decision processes. We consider the problem of compactly representing the state-action value function using a low-rank and sparse matrix model. The problem is to decompose a matrix that encodes the true value function into low-rank and sparse components, and we achieve this using Robust Principal Component Analysis (PCA). Unde...
متن کاملPenalized spline models for functional principal component analysis
We propose an iterative estimation procedure for performing functional principal component analysis. The procedure aims at functional or longitudinal data where the repeated measurements from the same subject are correlated. An increasingly popular smoothing approach, penalized spline regression, is used to represent the mean function. This allows straightforward incorporation of covariates and...
متن کاملPersian Handwriting Analysis Using Functional Principal Components
Principal components analysis is a well-known statistical method in dealing with large dependent data sets. It is also used in functional data for both purposes of data reduction as well as variation representation. On the other hand "handwriting" is one of the objects, studied in various statistical fields like pattern recognition and shape analysis. Considering time as the argument,...
متن کامل